

Measuring a Left Hand Circular Double Helix

Application Note

http://www.DiamondEng.net (530) 626-3857 484 Main Street, Suite 16 Diamond Springs, CA 95619 Support@DiamondEng.net

Overview

Using the horizontal-vertical (H-V) method the Helix left-hand circle (LHC) and right-hand circle (RHC) will be measured.

Instructions

First, measure AUT with Horn in vertical position and save that data to **REG1**.

Next, Rotate Reference Horn 90 deg counter clock-wise, repeat measurement and save data to **REG2**.

NOTE: Incorrect rotation of the reference horn will switch LHC and RHC. The DAMs is set up for CCW rotation. Vertical orientation is arbitrary. The difference between the H and V measurement must be 90 deg.

Now invoke the Path Loss calculator and specify the appropriate figures. Once completed, ensure the "*Generate Path Loss*" button is green as shown below. The green signifies that the data has been saved internally.

Data Manipulation Options		Generate Path I	Loss	Gain Xfer	Efficienc	
Flip EL sign	Print	EL Swing Corr.	Import REF Ante	enna 🔨	3-Point Gain	Gain Substi
Register Math 👔 🛛 🖓		Calculator Status				

Once completed, invoke the "*Import REF Antenna*" button to load the appropriate calibration data. Again, verify this button has also now turned green as shown below:

Data Manipulation Options	Generate Path Loss	Gain Xfer	Efficien
Flip EL sign Print EL Swing Corr.	Import REF Antenna	3-Point Gain	Gain Subst

Continues next page...

Continues next page...

Use KEEP, Normalize and Don't Plot to compare LHC RHC

Scale to 20Log

Set Marker contour and position markers to measure LHC RHC difference