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1.1  

1.2 Antenna Measurements  
By Michael Hillbun 
1.3 Introduction 

1.3.1 Friis Equation 
Traditional Antenna measurement has until recent years required custom 
techniques and hardware. Measurement of small radiated signals over wide 
dynamic ranges required the use of individually calibrated detectors and 
low noise high gain receivers. These systems were limited to measurement 
at a single frequency making frequency sweeps very time consuming. 
Performing a measurement sweep over Azimuth and Elevation required 
control and synchronization through the use of a computer. The rapid and 
unforeseeable evolution of the computer has given antenna measurement a 
technological boost. Vector based network analyzers and simple stepper 
motors are easily controlled by micro computers for large amounts of data 
collection. Vector based network analyzers also make possible antenna 
separation measurements based on group delay. 
This chapter will present measurement considerations associated with 
antenna measurements made using fast efficient data collection and 
processing systems. Far field criteria, reflections and multipath estimates 
are important knowledge for measurement dynamic range consideration. 
The choice of Az-EL movement sequencing and its dependence on 
mechanical considerations and symmetry is presented. Lastly an actual 
measurement made using a commercially available system is performed 
using two different techniques one based on use of a calibrated reference 
and the second based on the 3-antenna method. Both methods are based on 
the solution of Friis formula: 
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Where: 

rP  = Received power level 

tP   = 
Transmit power level 

   = Transmit wave length 

tG  = 
Gain of the transmit antenna 

rG  = Gain of the transmit antenna 

rG  = Gain of the receive antenna 

d    = Separation distance between antennas
      
It is convenient to express Friis formula in terms of S212 = rP / tP   and dB: 
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Where the path loss is defined as: 
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There are several useful measurement constants that can be derived from 
this simple equation.  First note that at a distance of one wavelength from 
the source the path loss is: 
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The Path Loss equation can then be written as: 

)(2098.21
d

LogPdB
L


  (1.5) 

 
 

Note that each time the distance increases by a factor of 10 the path loss 
increases 20dB. Similarly if the distance from the source doubles then the 
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path loss increases by 6dB. These three relationships are summarized as 
follows: 
 

1. Minimum path loss between any two antennas is  -22dB  
2. Path loss increases 6dB for each distance factor of 2 from 

the source 
3. Path loss increases 20dB for each distance factor of 10 

from the source 
 
Measurement Estimate 
 

Assume a measurement is to be performed using a calibrated horn and a 
dipole antenna. The separation distance between the two antennas is to be 
200 . The calibrated horn is known to have a gain of 8dB. Estimate the 
link loss from the above relationships. 
 
Solution 
We know at a distance of one   the loss is 22dB and increases 20dB for 

every separation factor of 10 so at 10  we are at 22dB + 20dB = 42dB 

and at 100    PL (100  ) = 42dB + 20dB = 62dB.  Now at double the 
distance we encounter an additional 6dB loss resulting in a total path loss 
of: 
 
  PL (200  ) = 62 + 6 = 68dB 
 
Next add the gain of the horn plus 2dBi for a typical dipole and the link 
loss estimate is: 
 

dBS dB 58286821   
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1.4 Antenna Measurement Considerations 
 

The measurement of an antenna under test (AUT) requires knowledge of 
the desired test field wavefront at the plane of the AUT. If one wishes to 

perform measurements on an AUT using a linear yE  test field, then tests 

must be done to insure  ),(
__

zxE Y
 ~ 0 or are acceptably small. Test field 

energy present in the x,z directions will manifest as a loss and affect the 
AUT gain. Typically such error components are specified as “not to 

exceed”.    
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Fig 1-1 In this system test field components are required to be linear and constant along the AUT  

                          vertical Y axis 

 
 
In measurement systems where the AUT axis is not coincident with the 
mechanical movement structures’ axis the AUT will move through the test 
field in both elevation and separation r . The change in separation will 
cause a test signal amplitude change.  
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If we define the percentage of d change as 


r

r
1 then the 

corresponding increase (or decrease) in test signal level (dB) is: 
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This equation is a simple expression for path loss change in terms of 
relative distance. The previous useful relationships can easily be checked. 
For example is the distance between source antenna the AUT doubles then, 
  

dBLogPand dB
L 6)2(202   

 
An antenna measurement system which shifted the AUT toward the source 
1% of the separation distance would change the path loss by, 
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Elevation swing



r

Azimuth rotation
dyr’=r+dr
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Fig 1-2 AUT test setup showing the movement (dx,dy) of the AUT phase    

        center through the radiated test field 
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When performing a measurement the uncertainty of path length can 
significantly affect accuracy. As the path length decreases toward a single 
wavelength the gradient increases. Path loss is defined as: 
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For a given range configuration one must consider the sensitivity to path 
length inaccuracies. If the range were 36in and the test frequency were 1 to 
6GHz then what is the error/in? The path loss slope is: 
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Or over frequency: 

 
 
 
A useful sensitivity figure of merit can be derived from the dB path loss 
slope. Let the db path loss be defined as: 
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1.95 

 
This means the db sensitivity is constant and independent of frequency. If 
the same plot is performed for 36in and 700MHz to 6GHz we have: 



Practical Antennas 7 
 

 
 

Equation 1.95 is an important and useful parameter. 
 
 
In a typical AUT test setup it is necessary to move either the source or the 
AUT while making measurements. Fig 1-3 shows and exaggerated 
elevation movement of the AUT. The dy movement represents the new 
vertical position of the AUT in the test field while the dr movement 
represents the inverse square variation. The two variations give rise to a 
test field variation dE(r,y) at the AUT phase center. The dr variation 
caused by inverse square(from the source) is 
simply )(20 LogPdB

L  while the dy variation is due to the physical 
properties of the test field antenna and must be measured.  
Diagrammatically the AUT movement looks like:  

 h
h
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Fig 1-3 The application of the Law of Cosines yields the following simple equation for the source path  

                     variation 
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The dB correction factor is then: 
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h/r = .001 to 1 
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Fig 1-4 Cumulative plot of path loss dB change for a wide range of h/r 

 
Test Field Measurement – Boresite method 
The test field variation Ey(r,y) from the source antenna must be measured 
with an isotropic probe antenna Gr~1. It is necessary to align the phase 
centers of source and the AUT. This can be done using a “boresight” 
alignment tool. The isotropic antenna is moved y vertical distance to 
determine the test field variation. 
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Fig 1-5 Boresite alignment of the phase centers and probing the test field for variations. 

 
The elevation rotation  shown in Fig 1-5 suggests dy<0 such that the test 
probe movement should be in the –y direction.  
With the y origin at the AUT phase center the dB change in source gain  is:  
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Applying the Log identity 
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The dB link equation is written 121  dB
t

dB
LdB GPS  and the test antenna 

gain along the boresight is: 
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The dB change in signal strength with vertical movement of the isotropic 
probe antenna is: 
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This provides a means of calibrating the test system. Generally the term 
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 is very small for small y movements and the test field dB 

change is the dB change in S21 ie. 21S . For larger y movement but with 
222 ~ oo ryr  the test probe movement yields: 
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The dB change in path loss is linear with probe movement.  
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Fig 1-6 Path loss deviation for vertical movement of the test probe normalized to ro=1. 



Practical Antennas 12 
 
 
The field calibration consists of first aligning the phase centers of the 
source antenna with that of the isotropic probe.  The probe is then lowered 
by a small amount and the dB change in S21 noted. Ideally the probe will 
be moved through the entire elevation range generating a data array which 
can be used in a measurement sequence as a correction matrix ][ tG . 

 
Boresite  
In antenna measurement it is necessary to have some point of reference. In 
the case of a simple measurement the data is taken as a function of Az and 
EL it is necessary to establish a reference angle for the AUT. The 
Az=EL=0 point is generally taken to be perpendicular to the AUT plane of 
symmetry in the quadrant of peak signal. The physical aspects of the AUT 
generally dictate the Az=EL=0 plane. However in practice peak signals 
and intuitive reference planes may not exactly be where they are supposed 
to be. High gain phased arrays require extremely accurate boresite 
alignment. Consider the Azimuth measurement shown below. 

 
In this measurement a scale has been placed parallel to the AUT reference 
plane as defined by the manufacture. The scale origin is made to be 
precisely at the center AzEL point of the aperture. The AUT is replaced 
with a laser so that the scale is illuminated as the platform is rotated. 
Assume the platform is jogged + and - f. The distances d1 and d2 are 
noted. By applying the Law of Cosines to both triangles and the entire 
periphery we have: 

)cos(20 1
22

1
2

1 rrrrd 
  

)cos(20 2
22

2
2

2 rrrrd 
 

)2cos(2(0 21
2

2
2

1)
2

2
2

1 rrrrdd 
 



Practical Antennas 13 
 
The three equations can solved numerically for the unknowns r1, r2,  and r. 
The tilt (boresite) angle can then be determined as: 
 

i

ii

rd

rdr
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222 
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Where i denotes the upper or lower triangle. It is notable that the equations 
are not linear. If the first or second equation is solved for ri we have 

ii drrr 222 )1)((cos)cos(    

Since )cos(r  is the projection on to the real axis the positive root must be 
selected in each case. However it is possible for the root to have a zero or 
negative argument leading to a maximum value of r given by 

)(cos1( 2max


 id
r  

When f is small rmax can be used as an upper limit in numerical solutions. 
The DAMs laser algorithm can be used for measurement solutions. The 
case of perfect boresite (d1=d2) forming a right triangle can be used to 
estimate distances and as a check to the numerical solution. 
 
Example: Assume the distance and boresite accuracy is unknown. What is 
known is the platform jog angle and the distances d1 and d2. 
 
 
 

   deg5  

   7.101 d  

   3.101 d  
 
 
When the data is input to the DAMs calculator the following results: 



Practical Antennas 14 
 

 
The tilt angle 10.73 deg and the associated distance is 118.2”. The right 
triangle solution shows that for r=118.2 d=10.34. We will assume the 
actual distance = 118.2. The Reference is then rotated and the data retaken.  
The measured distances were resolved to the nearest .1. The resulting 
distance 117.7 is within .2% of the actual distance. In an antenna gain 
measurement that would translate to 1.8m%. 
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1.5 Gain Transfer Method of Measurement 
The gain transfer method of antenna measurement is the most widely used 
technique. Based on simple comparison it requires a calibrated reference 
antenna and knowledge of the path loss between the two antennas. The 
measurement is based on far field assumptions. The three primary field 
regions, the near field reactive region, the radiating near field and the far 
field. It can easily be shown that the inverse square law becomes a more 
complicated relationship at regions closer to the radiating elements. 

R1

R2

R

Origin

Measurement
point
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Fig 1-7 Radiating near field region where field strength S is ),( 2 RnRS 
, When R becomes large 

compared to the largest radiating element Rn ~ R becomes the far field region. 

 
 

The transition from near field and far field is not a discrete distance and 
depends on the nature of the radiating structure. However equation 4.9 is a 
widely accepted relationship in terms of the largest dimension (D) of the 
radiating element of a large radiator.  

 



22D
Rff   (1.18) 

For antennas which are not electrically large such as dipoles whose lengths 

are on the order of 2/ the transition region can be very close ie. 
2


 and 

the second condition (Eq. 4.10) is applied. 
At regions very close to the radiating element non-propagating fields 
become dominant. Coupling to test probes may exist magnetically, 
electrically or both. These fields have varied applications such as RFID 
and RF components.  
Now consider what happens when the path loss is evaluated for path 
lengths less than 1 wavelength. The path loss: 
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Is indeterminate when r = 0. One expects the path loss to be a number 
between 0 and 1. We solve for the condition where 
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r  about 1/12th wavelength 

 
If r is less than this then the path loss becomes a gain, an impossible 
situation. The solution to the problem stems from the fact that as the path 
loss is reduced to inside the near field where free photons are generated, 
the link begins to miss free photons thereby reducing the gain. The 
measured link gain must approach 
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This results in the product RxTxGG  reducing so as to directly compensate 

the . Corrections can be made for specific cases by utilizing the near field 
variations. In the case of electric antennas the path loss is defined as  

   642 )
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 1.186 

If eq. 1.186 is evaluated for small to large 

r

from 1 to 6GHz we get 

 
The above equations in conjunction with dipole geometry form the plot. 
 
 
 
Referring to Eq. 1.2 it is instructive to establish the entire measurement 
link as a 3 element system. 
 

Receive AUT Gain

LOAD

Path Loss
Source Antenna  Gain

Source Gain

 
           

Fig 1-8 AUT (Antenna under test) measurement test setup for Gain Transfer Technique. 
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Figure 1-8 represents a simple 3 element network where two of the three 
elements are known and the third (AUT) is to be determined. Solving Eq. 
1.2 for dB

rG yields 

dB
t

dB
LdB

dB
r GPSG  21  (1.19) 

The path loss is determined from Eq. 1.6 and the Source Antenna Gain is 
supplied from the manufacture. 
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Measurement Example – Gain Transfer 
 
In this example a 5.8GHz double helix antenna is to be measured over a 
frequency band extending from 5GHz to 5.9GHz. Fig. 1-8 shows a typical 
platform consisting of two movement stepper motors an acrylic test 
platform and a rotary joint. The platform movement is software controlled 
and interfaces to a Vector Network Analyzer(Fig. 1-9). 
 

 
          

Fig 1-8 Commercial antenna platform used for Azimuth  and Elevation rotation driven by software and      

                   associated measurement equipment. Courtesy of Diamond Engineering Inc. 

 
The most common control interface is RS232 serial. Compatibility with 
modern USB interface is achieved through USB to Serial converters. The 
platform Azimuth movement is achieved through geared stepped rotation 
of the upper plate. The elevation is changed using the Elevation threaded 
pushrod. The above platform is easily capable of  45 degrees Elevation in 
.1deg increments and 0-360 deg Azimuth in .1 deg increments. Fig1-8.1 
shows a typical antenna test system interface. 
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Fig 1-8.1 A typical measurement setup using a vector Network Analyzer, stationary calibrated 

reference horn, controller PC and a programmable platform. The PC instructs the positioner to move, triggers a 
frequency sweep from the VNA and adds the data to a software measurement array. 

 
 
Simple test platforms can be driven from special microwave software to 
produce some amazing plots such as the spherical plots below. 

 
          

Fig 1-8.2 Actual Az-El measurement data with Cartesian to Spherical transformations applied.  

A.) Patch antenna with ideal isotropic and dipole references. 
B.) Long-wave dipole. 
C.) ¼ wave dipole log response showing wireless network interference. 
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As previously demonstrated the elevation “swing” of the antenna can affect 
measurement accuracy (Fig 1.2). Another more prevalent problem is that 
of multi-path interference. The possibility that reflected rays from other 
objects may be incident on the AUT. The effect is shown in Fig1-9.  

r
AUT

S ou rc e An te nn a

Reflected Ray

r’
Direct Ray

Measured Free-space
Measured with Multi-path

Received
power
(dbM)

Frequency

)( f



d1 d2

 
    

Fig 1-9 Multi-path effect in antenna measurement systems caused by reflections from nearby objects. 

The reflected ray travels a longer path and is attenuated by the reflection cross-section. Result is that ripples   
occur in the received power profile. 

 
As can be seen by the power variation (fig. 1-9), multi-path can inject an 
immense variation in the received power rendering measurements 
meaningless. For this reason anechoic chambers consisting of carbon based 
absorber covering the walls are used. 

 
 

Fig 1-10 Anechoic antenna measurement chamber constructed for very high microwave frequency  

 antenna measurements (Courtesy of Motorola)  
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Making measurements without the use of an anechoic chamber. 
Examination of fig. 1.9 and equation 1.5 can suggest a simple method for 
measuring antennas in a cluttered environment. One first notes that if 

d


<<1 (as it is in the far field) the path loss gradient becomes small. This 

means that even though the multipath ray may travel considerably further 
distance, the path loss may be approximately the same. This explains the 
extreme ripples seen in the received power. 

)(20)(2098.21 dLogLogPdB
L    (1.5) 

One method is to simply reduce the measurement distance until the 
variation is less than the desired accuracy. 

Multi-path at 8 ft.

Multi-path at 3 ft.

 
 

Fig 1-11 Reducing the affect of multi-path by decreasing the measurement distance 

 
The gain of a circularly polarized helix antenna(Fig 1-8) is to be measured in 
the vertical direction over a frequency range of 5GHz to 5.9 GHz. The helix 
is intended for use over the 5.8GHz band and has a rated gain of 3.1dB. A 
broad band calibrated horn is used to supply the test signal from a vector 
network analyzer(vna). The measurement summary is as follows: 

 AUT   Helix circularly polarized 
 Freq  5.0 to 5.9GHz 
 Separation 36 inches 
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 Azimuth  0-360 deg 10deg steps Vertical orientation 
 Source  Anritsu MS4623B Vector Analyzer 
 Tx  Calibrated Horn 

 
In any measurement system it is necessary to compensate for the loss of 
the test system. In this case the system consists of RF cables and the AUT 
platform. Two common methods of system calibration are the Scalar cal 
and the Vector cal. The scalar cal requires knowledge of only the system 
loss while the vector cal requires calibrated standards and complex 
correction math. The vector cal provides phase as well as amplitude 
measurement. Phase measurement can be used to calculate the group delay 
to determine the system separation distance. In addition vector 
measurements allow the use of special transforms for data conversion to 
time domain or minimum phase. 

Open Load
Short Load

Open Load
Short Load

Through Line

Matched Load
Matched Load

 
 

Fig 1-13 Vector calibration utilizing Open-Short-Load and through lines to remove  
the frequency response of the measurement system 

 
 
The measurement steps are as follows: 

 Calibrate the system loss 
 Measure: Reference Antenna(dB) + Path Loss(dB) + AUT(dB) 
 Calculate the path loss (Eq. 1.5) 

 Calculate the AUT gain(dB) dB
t

dB
LdB

dB
r GPSG  21  
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Fig 1-14 Antenna gain measurement over frequency showing measurement levels 

 
The AUT gain is approximately 3.7dB. Since the AUT was rotated through 
one complete azimuth revolution the gain may experience change. Viewing 
the gain calculation as a function of rotation at a fixed frequency in polar 
coordinates is generally preferred. 
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Fig 1-15 Polar representation of antenna gain measurement normalized to Gmax. 

 
Since most receive systems operate over a wide dynamic range a log plot is 
useful. The linear polar plot of fig 1-15 may also be represented in Log 
format. Generally a linear axis is employed. When used, a singularity is 
present as G 0 . For this reason the log plot does not extend inside the 
first circle. 
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Fig 1-16 Log polar representation of antenna gain at 3dB/div. Outermost circle 
represents Gmax = 3.72dB. Span is 12dB (to inner circle). 

 
The log plot shows the dB variation of the AUT as it rotates. This can be 
useful to determine omni characteristics or beam width of high gain 
antennas. 

1.6 3-Point Method of Measurement 
The 3-point technique establishes Friis link equation as three equations 
with three unknowns. The arrangement is shown in Fig 1-17. The 
measurement pairs are [AUTa,AUTb], [AUTa,AUTc] ,[AUTb,AUTc] 
giving the following set of equations: 
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The brackets denote Az-El measurement data sets. The solution for the 
gains is: 
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]21[]21[][][ acbcab SSGG   

][][]21[][ bLbcc GPSG   
where all array values are in dB. 
 
 

d

AUTa

[AUTb]

[AUTc]dB
b

dB
a

dB
a

dB
L GGGPS dB

ab
21

          
Fig 1-17 Three point method utilizing all combinations of three antennas to establish  
3 equations with 3 unknowns 

While the solution seems straightforward there can be a subtle problem 
when only two AUTs are measured over Az-El extents. Generally AUTa is 
stationary. AUTb is then measured over Az-El extents. AUTc is measured 
over the same Az-El extents. Then AUTa is replaced with AUTb. The 
solution at each point of movement requires both AUTb and AUTc 
simultaneously move. Generally this is not possible with a single movable 
platform.  If the AUT movement is restricted to Az only and AUTb is 
symmetrical as with a dipole then substitution of AUTb for AUTa does not 
require rotation of AUTb. In this case the tolerance of AUTb symmetry 
will sum into the measurement accuracy. 
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1.7 Circularly Polarized Measurement 
The most popular and simplest method of measuring a CP antenna is the 
HV method. Assuming the AUT is circular or elliptically polarized the 
reference antenna is used to make two measurements, one positioned 
vertically and one measurement positioned horizontally. The results are 
then combined to determine the LHP and RHP gains. To see how this 
works requires knowledge of complex numbers. It is well known that any 
linear vector can be the sum of two counter rotating vectors. 
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Fig 1-18 A single linear vector is equivalent to two counter rotating vectors each 
with reduced amplitude 

 
With circular the question of reference generates multiple standards. 
Generally the right hand rule can be applied. However in a test system the 
aut of interest may be receiving not transmitting. That is the case with most 
aut test systems. For the DAMs system the direction of propagation is 
toward the aut and the observer is assumed stationed at the Tx. RHC is 
then clockwise. To reference CP to the AUT the rotation direction is 
changed to CCW. This is easily seen from the Real Imaginary propagation 
vector. If the reference horn is rotated CCW with respect to the RHC 
direction the result is opposite rotation of the propagation vector. 



Practical Antennas 29 
 

     

 
          

Fig 1-19 The right hand rule. With the thumb in the direction of propagation RHC 
follows the fingers. In this case the observer sees RHC as clockwise rotation from the 
source but CCW must be used for the AUT 
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Let us assume the H measurement result is jeEE 11  and the V 

measurement is jeEE 22  . It is necessary have phase information such 
as that provided by a vna. The result of the vector addition of these two 
measurements in terms of two counter rotating vectors is: 
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1
21

 jj ejEeELHC     

)(
2

1
21

 jj ejEeERHC    

Then each vector is broken down into real and imaginary as: 
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The associated Phase angles (90 degrees ideally) are: 
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It should be noted that positive reference antenna rotation should follow 
the right hand rule to prevent inadvertently switching RHC and LHC.  

1.8 Antenna Efficiency 
Antenna efficiency is generally defined as the ratio of total received power 
to transmitted power supplied to the Tx antenna. Measurement of total 
received power must be done by scanning the entire sphere enclosing the 
source or vice versa. The received power at each point is: 
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),( rTLTXr GGPPP   (1.6.1) 

 
Where the Tx antenna position is constant and the Rx aut is rotated about 
it’s phase center. The aut is presumed to be dimensionally small. 

The link efficiency,  =
TX

r

P

P
, can be calculated as: 
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(1.6.2) 

 
 Where Pd   =  Transmitted power density at a distance R 
  Pr   =   H+V Received power 
 

24 R

P
Pd TX
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  (1.6.3) 

 
        
The receive gain is determined from the measurement 2

21S  as 
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S
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Substitution of 1.6.3 and 1.6.4 into 1.6.2 gives 
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(1.6.5) 

 
 
The choice of spherical coordinate system as shown below requires   to 
range from -90 to +90 degrees. 
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If the Azimuth is swept from 0 to 360 degrees in N steps and the elevation 

swept from 
22


to  in M steps then d  can be approximated by 

N

2
 and 

d  by 
M


. If N and M are sufficiently large so that Pr per unit of area is 

constant the integration can be summed as: 
 

 


M

N
TL

NM

N

Cos
GP

S

NM
)(

4

),(2 2
21

2




  

 
 

 



Practical Antennas 33 
 

         
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Equation1.66 is the classical method of efficiency measurement in terms of 
S21 and referenced to level elevation. 
 
Assume an isotropic link is supplied with 1 Watt of power and at a distance 
R the Rx efficiency is to be measured by Azimuth 5 degree movement and 
elevation 5 degree movement. In this case  
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Performing the sum yields: 
 

%3.101  
 

A 1.3% error associated with 5 degree AzEL resolution. The question of 
how much error is experienced vs AzEL measurement resolution can be 
calculated from the isotropic link. The results are: 
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Fig 1-18 Efficiency measurement error vs Az EL resolution. For this case the Az  
steps = EL Steps from 1 to 20deg  

 
As would be expected the measurement error increases linearly. However 
at 7,11,13….. degrees, the degree per cut is not an integer in both the Az 
and EL range. This error reduces the resolution error. It suggests that a 
spherical scan at 19 degrees resolution would be at least as accurate as at 1 
degree resolution. A link with a patch antenna might have a beamwidth of 
60 deg. A measurement resolution at 11 deg would reduce the error and 
make measurements faster. 
 
Isotropic and Omni Efficiency Measurement  
 
There are some positioning considerations when making efficiency 
measurements. When measuring an isotropic type radiator the power 
density at a distance r in spherical coordinates is; 
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Antenna Gain Pattern
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Fig 1-19 Efficiency measurement based on Poynting vector integration over a 
spherical surface. Area ds diminishes to zero at top and bottom of sphere. 

Single AzEL zero

 
 

Fig 1-20 Dipole pattern with a single AzEL zero point 
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1.9 Diamond Engineering Continuous Platform Rotation 
Measurements 

Remote Location 
 
The measurement of antenna pattern traditionally requires AUT start stop 
and step. The aut is motionless while the data acquisition is performed. 
Range is limited by the need for RF and acquisition cables. This problem 
can be overcome by applying Nyquist’s classical sampling theorem and 
eliminate the need for triggering and cables. The question is “how fast can 
the platform rotate and still produce accurate data”. 
First assume the vna sweep speed is   seconds. Assume the data S21(f) is 
transferred in a period T seconds and AUT is rotating at P  radians per 
second. 

 
 

Fig 1-21 Remote measurement of antenna properties. Sampling period and width are 
initially determined to set the low pass filter cutoff frequency. The sample width is the 
sweep period while the sample rate is the data transfer frequency 
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The sample process is a direct application of the sampling theorem. 
 

 
 

Fig 1-22 Sampled data for received power over Azimuth rotation.  

The classical Nyquist sampling rate is: 
   
    Fs > 2B 
 
Where B is the rotational bandwidth of the received signal. Generally a 
swept source and a swept receiver provide the necessary sampling. The 
sweep time is  and the period T form the sampling source. The period T 
includes retrace time and data transfer time over a bus. The gain function 

))(( tAG Z  of the AUT, subjected to periodic motion, form the signal to be 
sampled and recovered. Clearly the rate at which the gain function changes 
with angle forms the rotational bandwidth of the received signal. For 

normal rotation ttA PZ )(  where RPMP 30

   radian cycles/sec. 

The time dependence of the received signal power is 
   )()()Pr( tGPtt P  
 
The gain function can be described as a shape over periodic rotation at a 
rate P . Most gain shapes will have regular forms which mean equivalent 
rectangular beam widths are applicable. 
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Fig 1-22 Time pulse equivalent of AUT rotation generating an approximate                           
                  bandwidth from the beam width/duty cycle (DC). 
 
The amplitude envelope for this problem is easily established as 
 

   
)2/(

)2/sin(




P

P  

Where    BeamwidthEquivalant  

   eedPlatformSpP   
 
A plot of the function shows the complex Fourier bandwidth and that 

 
Fig 1-23    Amplitude-frequency envelope of the sampling pulse 
 



Practical Antennas 39 
 
Most of the energy is between 0 and )( 180 degrees. It is reasonable to 

assume bandwidth can accurately be estimated by 

1

where  is the 

equivalent energy pulse of the AUT gain shape. 

If the platform is rotating at RPM then the rotation frequency is 
60

RPM
 and 

the associated period is 
RPM

T
60

 . The period associated with the 

beamwidth is simply  

RPM

BeamwithBeamwidth

RPM 6360

60
  

The bandwidth is then: 
 

Beamwidth

RPMk
BW

6



Where k is 1 for T  

 
    
The Nyquist minimum sampling rate is 
 

    
Beamwidth

RPM
BWFS

*12
*2   

 

The platform rotational frequency is 
60

RPM
f p  cps and the minimum 

sampling rate is then 

   
Beamwidth

RPM
Fs

*12
  where  sec/cyclesFs   

      degBeamwidth  
 

The receiver needs to sample at rate 
Fs

1
samples/sec.  

 
Now consider a non-synchronous wireless system. The Tx signal generator 
continually outputs frequency pulses with negligible delay and no retrace 
delay. 
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On the receive side a multiplexer is used as a sampler. A spectrum analyzer 
is ideal for serving as the multiplexer and receiver. If the system were 
synchronous the analyzer sweep speed would need to be n . Because the 
sampler is free running one needs to insure all frequencies are received by 
setting the sweep speed to  . Otherwise it will be necessary to make 
multiple 360 deg rotations. 
Given the platform rotational speed and the AUT beamwidth (or the 
desired resolution beamwidth) the transmit period will need to be: 
 

RPM

Beamwidth

Fs
T

*12

1
  

And the receiver sweep speed 
 

   
RPMn

Beamwidth

nFs
T

*12

1
  

 
As an example assume 51 frequencies are transmitted to a receive antenna 
with a 45 deg beamwidth. It is desired to set the measurement resolution 
accuracy to 5deg. The rotating measurement platform rotates 360 deg in 1 
minute. 
In this case the maximum transmit period will need to be set to: 
 

   sec417
12

5

*12
m

RPM

Beamwidth
T   

 
And the receiver minimum sweep speed is then ms17.851/417   
 
Using the DAMs sampling software a plot of Sweep(s) vs PlatformRPM 
yields: 
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Example: Error reduction 
 
As an example of using the sampling system to eliminate error we first 
analyze an ideal dipole over an Az range of 0 to 360deg with 5 deg 
resolution. 

 
 The data is then given random amplitude error with +/- 25% variation. The 
embedded error file is then processed through the sampler to 1deg 
resolution and compared with the original response. From the practical 
dipole equations it is known that sampling to order 6 reproduces the dipole 
equations accurately. 
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Next we ask how close to the exact original profile is the sampler output 
data? An overlay of both plots shows that the original data has been 
recovered to a high degree of accuracy. 
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Example: Low resolution saving time and High resolution sampler output. 
 
In this example we again use the dipole simulator and scale the 
measurement minutes to hours instead of minutes. Assume it necessary to 
measure a large heavy dipole to a resolution of .1 deg. If we measure 
directly at .1deg resolution the DAMs clock shows: 

  
11 hours is required. Now since we have some knowledge of a dipole 
pattern we reduce the resolution to every 15 degrees and adopt a sampling 
order of 6 as before. This will require approximately 11hr*.1/15= 3.3 
minutes. But is the data accurate?  
The sampler plots below show an accuracy of the less than 1%. 
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The 3 minute and 11 hour data are clearly indistinguishable.   

1.7 Antenna Maximum Bit Rate 
In digital communications it is well known each component in a system 
may contribute to the overall bit error rate. These errors may originate form 
a variety of sources but the most common is that of atmospheric noise. The 
receiving antenna is subjected to noise generated by the temperature of the 
local sky. The result is a signal to noise ratio developed at the antenna 
output. This ratio results in a maximum possible bit error rate as 
determined by Shannon’s limit. 
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)/1((max) 2 NSLogBWBitRate   

 
where BW = The information bandwidth 
 S = Received signal power density integrated 

over the antenna frequency response 221S . 
 N = Noise power determined by noise density 

integration 
 
Shannon’s limit yields a figure of merit by which modulation techniques 
may be evaluated. By plotting the antenna BRmax verses distance a 
judgment can be made as to the maximum distance (in a given system) the 
antenna is useful.  
The AUT Pr can be determined from Friis’ equation 
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   as 

rTLTXr GGPSPP 2
21  

The variation in 221S may be due to the AUT gain variation and the AUT 
S22. The measurement S21 may be corrected for the AUT S22 as follows: 

)221(2121 222
AUTAUT SSS   

This separates the AUT gain from the mismatch which may or may not be 
desired depending on whether or not the application will match the AUT.  
 
The receive signal level S is calculated as the average Pr over BW or: 
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Where          Ptx = Transmit power density magnitude.  
This represents an equivalent power level extending over the entire 
information BW. A similar calculation for the received noise requires the 
S21 response be normalize to 1 at the minimum loss point. 

 


